WATER QUALITY REPORT
2019
WHAT IS THIS REPORT?

This report is to let you - our customers - know that water produced by WaterOne meets or surpasses all standards for safe, high-quality water. WaterOne is required by drinking water regulations to make this water quality report available to customers. It’s like a nutritional label for the substance you probably consume the most - water! This data and information can be complex, so we’ve tried to make it readable while also including the required language. Congress, the Environmental Protection Agency (EPA), and WaterOne want to be sure that consumers know what’s in their drinking water.

WHAT DO WE TEST FOR?

WaterOne tests for over 100 regulated and unregulated contaminants in drinking water. Our state-of-the-art water quality lab utilizes multiple monitoring systems, and our water is continuously checked every single day of the year to ensure the finest water reaches our customers’ taps. All data in this report is from 2018. If a known health-related contaminant is not listed in this report, WaterOne did not detect it in the water.

HOW MUCH WATER DOES WATERONE PRODUCE?

In 2018, WaterOne treated a total of 24 billion gallons of water - approximately 7.1 billion gallons of Kansas River water, 9.9 billion gallons of Missouri River water, 6.7 billion gallons from its Wolcott Collector Well (adjacent to the Missouri River), and 0.3 billion gallons of water from wells south of the Kansas River. WaterOne customers consume between 50 to 130 million gallons per day (MGD), depending on the time of year. The most water consumed in one day was 157.5 MGD, set on July 23, 2012.

WATER AT A GLANCE

ALL DRINKING WATER, including bottled water, can reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. In order to ensure that tap water is safe to drink, the EPA has regulations that limit the amount of certain contaminants in water provided by public water systems and require monitoring for these contaminants.

SETTING THE STANDARD FOR UTILITY EXCELLENCE

WaterOne is certified as a Platinum Level utility for excellence in utility management by the Association of Metropolitan Water Agencies. WaterOne continues to hold the Phase III Directors Award from the Partnership for Safe Drinking Water, which recognizes water system operations and encourages performance above and beyond even proposed regulatory levels. WaterOne has also been recognized with the “Best Tasting Water In Kansas” award by the Kansas Section - American Water Works Association. We are proud to deliver great-tasting, high-quality water to your tap.

ENSURING SAFE, RELIABLE WATER

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, persons with HIV/AIDS or other immune system disorders, some elderly people, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. Guidelines from the EPA and Centers for Disease Control and Prevention (CDC) on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 800/426-4791.

MORE ABOUT WATERONE

WHERE DOES YOUR WATER COME FROM?

WaterOne’s drinking water comes from the Kansas and Missouri Rivers. With multiple water sources, we have less vulnerability during drought and an ample supply of fresh water year-round.

CUSTOMER SATISFACTION

We’re proud to carry an average overall customer satisfaction score above 90%. Our customers consistently give us high marks for water quality, reliability, customer service, and the responsiveness of our friendly, professional staff.

GREAT VALUE

WaterOne customers enjoy some of the lowest rates for water service in the metro area. Did you know? A PENNY buys you 2 gallons of WaterOne tap water. Based on 2018 rates for average residential customers.
WATER QUALITY DATA

TERMS, ABBREVIATIONS & SYMBOLS

Some of the terms used in this report are unique to the water industry and might not be familiar to all customers. Explanations are provided below.

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL): The highest level of a contaminant allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Not Detected (ND): Not detected in the water.

Nephelometric Turbidity Units (NTU): A measure of the clarity of water.

Parts per million (ppm): Or milligrams per liter.

Parts per billion (ppb): Or micrograms per liter.

Parts per trillion (ppt): Or nanograms per liter.

pH Units: A measure of acidity or basicity of the water.

Picocuries per liter (pCi/L): A measure of radioactivity.

Saturation Index (S.I.): Measure of corrosivity.

Secondary Maximum Contaminant Level (SMCL): Secondary MCLs for various water quality indicators are established to protect public welfare.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

μmhos/cm: Or micromhos/cm; a measure of the ability of a solution to carry an electric current.

Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants in drinking water sources may include:

- **Microbial contaminants,** such as viruses and bacteria, which may come from wildlife or septic systems.
- **Inorganic contaminants,** such as salts and metals, which can occur naturally or result from urban storm water runoff, industrial or domestic wastewater discharges or farming.
- **Pesticides and herbicides,** which may come from a variety of sources such as farming, urban storm water runoff and home or business use.
- **Organic chemical contaminants,** including synthetic and volatile organic chemicals, which are byproducts of industrial processes, and can also come from gas stations, urban storm water runoff and septic systems.
- **Radioactive contaminants,** which can occur naturally.

More information about contaminants and potential health effects can be found at the Environmental Protection Agency’s Safe Drinking Water Hotline at 800/426-4791 or at www.epa.gov/safewater.

Lead

We are passionate about producing great water and we are committed to quality control above and beyond the testing required by state and federal regulations. Given the water quality challenges experienced by other communities, we are grateful to be able to affirm for our customers that they receive high-quality, reliable WaterOne water each day.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with private service lines and home plumbing. WaterOne is responsible for providing high quality drinking water, but cannot control the variety of materials used in customers’ plumbing components. We have no indication that lead is a concern in this service area; however, if water has been sitting in pipes for several hours, those who are worried about lead can reduce their potential for lead exposure by flushing their taps for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your drinking water, testing methods and steps you can take to minimize exposure are available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Additional information is available at www.waterone.org/Lead.
WATER QUALITY: WHAT IS IN THE WATER?

REGULATED PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MCL</th>
<th>MCLG</th>
<th>WaterOne Result</th>
<th>WaterOne Range</th>
<th>Sample Data</th>
<th>Met Standard</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>6 ppb</td>
<td>6 ppb</td>
<td>0.6 ppb</td>
<td>ND (0.5) - 0.6 ppb</td>
<td>Quarterly</td>
<td>Met</td>
<td>Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder.</td>
</tr>
<tr>
<td>Arsenic</td>
<td>10 ppb</td>
<td>0 ppb</td>
<td>1.6 ppb</td>
<td>ND (0.5) ppb - 1.6 ppb</td>
<td>Quarterly</td>
<td>Met</td>
<td>Erosion of natural deposits; run-off from orchards, glass and electronics production waste.</td>
</tr>
<tr>
<td>Barium</td>
<td>2 ppm</td>
<td>2 ppm</td>
<td>0.06 ppm</td>
<td>0.02 ppm - 0.06 ppm</td>
<td>Quarterly</td>
<td>Met</td>
<td>Discharge of drilling wastes; discharge from metal refineries, erosion of natural deposits.</td>
</tr>
<tr>
<td>Chromium</td>
<td>100 ppb</td>
<td>100 ppb</td>
<td>3.3 ppb</td>
<td>1.5 ppb - 3.3 ppb</td>
<td>Quarterly</td>
<td>Met</td>
<td>Discharge of steel and pulp mills, erosion of natural deposits.</td>
</tr>
<tr>
<td>Copper</td>
<td>AL=1.3 ppm</td>
<td>1.3 ppm</td>
<td>0.016 ppm</td>
<td>0 samples exceeding; 2018</td>
<td>Annually</td>
<td>Met</td>
<td>Corrosion of household plumbing, erosion of natural deposits; leaching from wood preservatives.</td>
</tr>
<tr>
<td>Fluoride</td>
<td>4 ppm</td>
<td>4 ppm</td>
<td>0.78 ppm</td>
<td>0.2 ppm - 0.78 ppm</td>
<td>Monthly</td>
<td>Met</td>
<td>Erosion of natural deposits; water additive (oral health); discharge - fertilizer and aluminum factories.</td>
</tr>
<tr>
<td>Lead</td>
<td>AL=15 ppb</td>
<td>0 ppb</td>
<td>4.3 ppb</td>
<td>0 samples exceeding; 2018</td>
<td>Annually</td>
<td>Met</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits.</td>
</tr>
<tr>
<td>Nitrate</td>
<td>10 ppm</td>
<td>10 ppm</td>
<td>3.8 ppm</td>
<td>0.64 ppm - 3.8 ppm</td>
<td>Annually</td>
<td>Met</td>
<td>Fertilizer run-off, leaching from septic tanks, sewage; erosion of natural deposits.</td>
</tr>
<tr>
<td>Nitrite</td>
<td>1 ppm</td>
<td>1 ppm</td>
<td>0.06 ppm</td>
<td>ND (0.025) ppm - 0.06 ppm</td>
<td>Annually</td>
<td>Met</td>
<td>Fertilizer run-off; leaching from septic tanks, sewage; erosion of natural deposits.</td>
</tr>
<tr>
<td>Selenium</td>
<td>50 ppb</td>
<td>50 ppb</td>
<td>3.4 ppb</td>
<td>1.0 ppb - 3.4 ppb</td>
<td>Quarterly</td>
<td>Met</td>
<td>Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.</td>
</tr>
<tr>
<td>Synthetic Organic Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>3 ppb</td>
<td>3 ppb</td>
<td>ND (0.2) ppb</td>
<td>ND (0.2) ppb - 0.4 ppb</td>
<td>Monthly</td>
<td>Met</td>
<td>Run-off from herbicide used on row crops.</td>
</tr>
<tr>
<td>Disinfectants/Disinfection By-Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloramines</td>
<td>MRDL=4 ppm</td>
<td>MRDLG=4 ppm</td>
<td>2.8 ppm</td>
<td>1.1 ppm - 3.7 ppm</td>
<td>Daily</td>
<td>Met</td>
<td>Water additive used to control microbes.</td>
</tr>
<tr>
<td>Chlorine Dioxide</td>
<td>MRDL=800 ppb</td>
<td>MRDLG=800 ppb</td>
<td>476 ppb</td>
<td>ND (50) ppb - 476 ppb</td>
<td>Monthly</td>
<td>Met</td>
<td>Water additive used to control microbes.</td>
</tr>
<tr>
<td>Chlorite</td>
<td>1 ppm</td>
<td>0.8 ppm</td>
<td>0.35 ppm</td>
<td>ND (0.020) ppm - 0.52 ppm</td>
<td>Monthly</td>
<td>Met</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Haloacetic Acids (HAA)</td>
<td>60 ppb</td>
<td>n/a</td>
<td>20 ppb</td>
<td>3.2 ppb - 32.9 ppb</td>
<td>Monthly</td>
<td>Met</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Total Trihalomethanes (THM)</td>
<td>80 ppb</td>
<td>n/a</td>
<td>23 ppb</td>
<td>1.1 ppb - 27.2 ppb</td>
<td>Monthly</td>
<td>Met</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Microbiological Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliforms</td>
<td>Presence in ≥ 5% of monthly samples</td>
<td>Ø<1/100 mls</td>
<td>1.7%</td>
<td>0 - 1.7% positive samples/month</td>
<td>Daily</td>
<td>Met</td>
<td>Naturally present in the environment.</td>
</tr>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>Removal ratio 3</td>
<td>TT</td>
<td>2.0</td>
<td>1.6 - 2.7 RAA Removal Ratio</td>
<td>Monthly</td>
<td>Met</td>
<td>Naturally present in the environment.</td>
</tr>
<tr>
<td>Turbidity</td>
<td>TT NTU</td>
<td>TT NTU</td>
<td>0.2 NTU 4</td>
<td>100% lowest monthly % meeting 0.3 NTU</td>
<td>Daily</td>
<td>Met</td>
<td>Soil run-off.</td>
</tr>
<tr>
<td>Radiological Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta Particle & Photon Radioactivity</td>
<td>50 pc/L</td>
<td>0 pc/L</td>
<td>7.5 pc/L</td>
<td>5.9 pc/L - 7.5 pc/L</td>
<td>Annually</td>
<td>Met</td>
<td>Decay of natural and man-made deposits.</td>
</tr>
<tr>
<td>Uranium</td>
<td>30 ppb</td>
<td>0 ppb</td>
<td>0.43 ppb</td>
<td>ND (0.26) ppb - 0.43 ppb</td>
<td>Annually</td>
<td>Met</td>
<td>Erosion of natural deposits.</td>
</tr>
<tr>
<td>Radium - 226</td>
<td>5 pc/L</td>
<td>0 pc/L</td>
<td>ND (0.1) pc/L</td>
<td>ND (0.1) pc/L - 0.1 pc/L</td>
<td>Annually</td>
<td>Met</td>
<td>Erosion of natural deposits.</td>
</tr>
<tr>
<td>Radium - 228</td>
<td>5 pc/L</td>
<td>0 pc/L</td>
<td>0.74 pc/L</td>
<td>ND (0.67) pc/L - 0.74 pc/L</td>
<td>Annually</td>
<td>Met</td>
<td>Erosion of natural deposits.</td>
</tr>
</tbody>
</table>

1. Data from 2018 annual monitoring. This value is the 90th percentile result. The 95th percentile value for lead is 4.9 ppb; the 95th percentile value for copper is 0.017 ppm.
2. WaterOne is required to maintain a minimum residual of 1.0 ppm throughout its distribution system by the Kansas Dept. of Health & Environment as a means to provide some measure of protection against microbiological contamination. Maximum residual compliance is based on monthly averages.
3. Monthly TOC removal ratio is calculated as the ratio between the actual TOC removal achieved and the TOC rule removal requirements.
4. This is the highest turbidity measurement for 2018. Compliance is based on 95% of monthly samples being less than 0.3 NTU. The average turbidity was less than 0.10 NTU. Turbidity is measured as an indicator of the effectiveness of the water treatment process. The lower the turbidity, the more effective the treatment process.
5. EPA considers 50 pc/L to be the level of concern for beta particles.
UNREGULATED PARAMETERS

WaterOne conducted testing according to the EPA guidelines for the following Unregulated Parameters.

CONSTITUENTS HAVING SECONDARY MCL'S

Monitored in the interest of consumers and to assist regulators in developing future regulations.

UNREGULATED SOURCE WATER CONTAMINANT MONITORING RULES

Fourth cycle (UCMR4) [Sampling period: January - December 2018]

Unregulated source water contaminant monitoring helps the EPA determine where certain contaminants occur in the source water and whether the Agency should consider regulating those contaminants in the future.

### Parameter	Federal Level Recommended	WaterOne Results (Ave.)	Range
Alkalinity, Total* | 300 ppm > 40 ppm | 61 ppm | 48 ppm - 94 ppm
Bromodichloromethane | n/a 0 ppb | 2.8 ppb | 0.6 ppb - 4.7 ppb
Calcium | n/a n/a | 273 ppb | 99 ppb - 622 ppb
Carbon, Total Organic (TOC) | 10,000 ppm n/a | 2.8 ppm | 2.2 ppm - 3.7 ppm
Chlorate | n/a n/a | 273 ppb | 99 ppb - 622 ppb
Chlorodibromomethane | n/a 60 ppb | ND (0.5) ppb | ND (0.5) ppb - 2.2 ppb
Chloroform | n/a 70 ppb | 7.5 ppm | 1.1 ppm - 24 ppb
Conductivity | 1,500 μhos/cm n/a | 640 μhos/cm | 461 - 980 μhos/cm
Dibromoacetic acid | n/a n/a | ND (1.0) ppb | ND (1.0) ppb - 1.3 ppb
Dichloroacetic acid** | n/a 0 ppb | 11 ppb | 3.2 ppb - 26 ppb
Calcium* | 200 ppm > 60 ppm | 103 ppm | 64 ppm - 145 ppm
Hardness, Total* | 400 ppm 200 ppm | 142 ppm | 108 ppm - 183 ppm
Manganese | 50 ppb 50 ppb | ND (1.0) ppb | ND (1.0) ppb - 2.5 ppb
Monochloroacetic acid | n/a ppb 70 ppb | ND (1.0) ppb | ND (1.0) ppb - 1.8 ppb
Nickel | 100 ppb 100 ppb | 1.4 ppb | ND (0.5) ppm - 10.0 ppm
Ortho-phosphate | n/a n/a | 0.05 ppm | ND (0.05) ppm - 0.10 ppm
pH | 8.5 pH units > 9.0 pH units | 9.5 pH units | 9.2 pH units - 9.8 pH units
Phosphorus, Total | n/a n/a | 0.11 ppm | ND (0.05) ppm - 0.24 ppm
Potassium | 100 ppm 20 ppm | 6.9 ppm | 4.5 ppm - 10 ppm
Silica | 50 ppm n/a | 8.4 ppm | 4.1 ppm - 13 ppm
Sodium | 100 ppm 20 ppm | 61 ppm | 35 ppm - 85 ppm
Trichloroacetic acid | n/a 20 ppb | ND (1.0) ppb | ND (1.0) ppb - 4.7 ppb

* As CaCO₃ ** The MCLG for Dichloroacetic acid is listed as zero (in ppm) in the Regulatory Statutes.

### Parameter	Federal Level Recommended	WaterOne Results (Ave.)	Range
Aluminum | 200 ppb | 19 ppb | ND (10) ppb - 120 ppb
Chloride | 250 ppm | 52 ppm | 18 ppm - 141 ppm
Chloroform | 1000 ppb | 2 ppb | ND (1) ppb - 10 ppb
Corrosivity* | 0.5 S.I. | 1.3 S.I. | 0.82 S.I. - 1.8 S.I.
Fluoride | 2.0 ppm | 0.57 ppm | 0.20 ppm - 0.78 ppm
Sulfate | 250 ppm | 152 ppm | 81 ppm - 215 ppm
Total Dissolved Solids (TDS) | 500 ppm | 320 ppm | 231 ppm - 490 ppm
Zinc | 5000 ppb | 8 ppb | ND (5) ppb - 47 ppb

* Positive values indicate tendency of water to be non-corrosive. Non-corrosive water reduces the likelihood of lead or copper leaching into the water from plumbing.

UNREGULATED CONTAMINANT MONITORING RULES

Fourth cycle (UCMR4) [Sampling period: January - December 2018]

Unregulated contaminant monitoring helps the EPA determine where certain contaminants occur and whether the Agency should consider regulating those contaminants in the future.

### Parameter	Federal Level Recommended	WaterOne Results (Ave.)	Range
Manganese | n/a ppm | n/a ppm | 0.4 ppm | ND (0.4) - 0.81 ppm
Total HAA | n/a ppb | n/a ppb | 10.9 ppb | 4.1 ppb - 21.1 ppb
Total HAA6 Br | n/a ppb | n/a ppb | 2.9 ppb | 1.7 ppb - 5.8 ppb
Total HAA9 | n/a ppb | n/a ppb | 13.3 ppb | 6.1 ppb - 23.9 ppb
Chlorodibromoacetic Acid | n/a ppb | n/a ppb | ND (0.3) ppb | ND (0.3) ppb - 0.4 ppb
Bromodichloromethane Acid | n/a ppb | n/a ppb | ND (0.5) ppb | ND (0.5) ppb - 0.8 ppb
Dibromoacetic Acid | n/a ppb | n/a ppb | ND (0.3) ppb | ND (0.3) ppb - 1.6 ppb
Monochloroacetic acid | n/a ppb | n/a ppb | ND (2.0) ppb | ND(2.0) ppb - 2.3 ppb
Bromochloroacetic acid | n/a ppb | n/a ppb | 2.2 ppb | 1.3 ppb - 3.7 ppb
Dichloroacetic acid | n/a ppb | n/a ppb | 9.5 ppb | 3.3 ppb - 19.5 ppb
Trichloroacetic acid | n/a ppb | n/a ppb | 0.7 ppb | ND (0.5) ppb - 1.76 ppb

* As CaCO₃ ** The MCLG for Dichloroacetic acid is listed as zero (in ppm) in the Regulatory Statutes.
Raw water is drawn from our fresh water sources - the Kansas and Missouri Rivers, adjacent collector wells, and conventional wells on the Kansas River - and collects in our pre-sedimentation holding basins. Water then goes through the following stages as part of the treatment process.

- **Coagulation/Flocculation** - Water is transferred to mixing basins at our treatment plants where we add alum, lime, and polymer. This process causes small organic particles to clump together, forming larger particles (flocculation).

- **Sedimentation** - Over time, the now-larger particles become heavy, settle to the bottom, and get strained out. Depending on the profile of the raw water at the time, we add lime and possibly soda ash to counteract calcium and magnesium, softening the water. Water is then transferred to a second clarifier where we add carbon dioxide to balance pH and treat it again to flocculate and strain sediment clumps.

- **Filtration** - Water filters through layers of fine, granular materials—anthracite coal and sand filters—or membrane filters. As smaller, suspended particles are removed, cloudiness diminishes and clear water emerges.

- **Disinfection** - To protect against bacteria and other microbes, chloramines are added before the water flows into the distribution system - clean, fresh, and delicious. Fluoride occurs naturally in our water but is also supplemented in the treated water.

All data is for January 1 to December 31, 2018, except as noted.

WaterOne is an independent public utility. We’ve been proudly serving the Johnson County, Kansas area since 1957. Every day, approximately 440,000 customers rely on WaterOne to provide fresh, clean water on demand. It’s a responsibility we deliver on.

HOW CAN I GET WATER ALERTS?

Sign-up for water alerts at www.NotifyJoCo.org. Customize your contact info, alert preferences, and tag your locations - home, work, school, etc. You’ll automatically get a phone call, text, or email if we need to take water down for maintenance or emergency repair as well as important water quality or water use alerts.

NotifyJoCo is made possible by a partnership of local governments and public utilities in Johnson County. Learn more at www.NotifyJoCo.org.

GOVERNING BOARD

Bob Reese, Chairman
Mark Parkins, Vice Chairman
Brenda Cherpitel
Terry Frederick
Kay Heley
Robert Olson
Dennis Wilson

Sustainability matters.

Being good stewards of the environment is part of our mission at WaterOne. When it comes to our shared natural resources, we have a special appreciation of the concept that everyone lives downstream. Here’s a few ways we’re contributing.

PLANET-FRIENDLY BUSINESS PRACTICES

Through recycling policies, earth-conscious fleet management, and efficient plant and facilities design, WaterOne practices sustainability every day. WaterOne’s commitment has been recognized with an RS Certification for Environmental Stewardship by the Johnson County Department for Health and Environment. Learn more at WaterOne.org/Green.

SOURCE WATER PROTECTION

Milford Lake and its watershed supply drinking water for nearly 1/3 of the Kansas population. WaterOne is a founding partner of a Regional Conservation Partnership Program to address water quality concerns in this vital water source. Learn more at MilfordWatershed.org.

EDUCATION & OUTREACH

Tap water is safe, delicious, and good for the planet. We’re getting the word out through our I Love Tap school outreach program, where sixth grade students learn where their water comes from and why drinking tap water is better for the environment. Learn more at ILoveTap.org.
Contact Us
10747 Renner Blvd.
Lenexa, KS 66219

Customer Service: 913/895-1800
24-Hour Emergency Contact

This report is available 24/7 at waterone.org/2019Report.
To request a paper copy, contact Customer Service at 913/895-1800.